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Abstract-A global formulation of the conservation laws (mass, momentum and energy) is applied to a 
two-phase, two-component flow through a sudden enlargement. The assumption of thermal equilibrium 
of the phases is acceptable. However, due to the difference in the mechanical inertia of the phases, the 
kinematic non-equilibrium effect has to be taken into account. In order to determine the role of mechanical 
non-equilibrium, two assumptions are made, which can be considered as two limited cases. Firstly, an 
infinite momentum transfer coefficient (mechanical equilibrium model) is assumed : an analytical solution 
can be obtained when the gas is ideal. Secondly, no momentum transfer can occur between phases 
(mechanical frozen model) : an approximate analytical solution is obtained in this case. The comparison 
in terms of singular pressure variations between the results of these two models and the experimental data 
of other authors for air-water mixtures shows clearly that both models indeed simulate two extreme 
conditions. New experimental data were obtained for two-phase air-water bubbly flow through an axi- 
symmetric and horizontal sudden enlargement. A new physical model approximately taking into account 
the effects of the interfacial drag of the bubbles is developed, and compared favourably with the data in 
the literature and the new data. This model shows a rather limited dependence with respect to the reduced 

bubble diameter. 0 1997 Elsevier Science Ltd. 

1. INTRODUCTION 

Different approaches can be considered to describe 
two-phase flow through a sudden enlargement. Such 
singularity is often encountered in the safety systems 
of process engineering, such as a pressure relief system. 
Generally, these circuits have the shape of a wire, 
which means that they have a characteristic length 
dominating with respect to the other dimensions. In 
this case, a global approach is the most suitable way 
to study the expansion as an element of a circuit, when 
a calculation has to be made on the scale of the whole 
circuit. Moreover, IIt enables one to easily adapt it to 
a computer code of a 1 -D flow. 

The behaviour of two-phase flow through a sudden 
enlargement has been the subject of several exper- 
imental and theoretical investigations. An important 
parameter which characterizes this type of singularity 
is the global singular pressure variation. Several ana- 
lytical methods of calculating this quantity exist in 
the literature [Id]. Some of these methods use an 
empirical correction, while others are incomplete and 
need closing relationships for the global void fraction. 
This could explain the limited character of the domain 
of application of each correlation. The incoherences 
observed by some authors [3, 51 can be also explained 
by the fact that these correlations do not take into 
account the structure of the flow. These previous 
simple correlations are often inaccurate. 

The aim of this paper is to identify the influence of 
the kinematic non-equilibrium of the phases by solv- 

ing some simplified models based on limited assump- 
tions. Analytical solutions of these simplified models 
can be obtained if the gas is assumed to be ideal. 
A bubbly flow model is then established in order to 
approximately take into account the interfacial drag. 
The system of non-linear equations which are deduced 
needs an iterative numerical method for its solution. 
This model, which does not seem to be very sensitive 
to the diameter of bubbles over a wide physical inter- 
val, is compared with the two simplified models. The 
bubbly model is finally valided by means of the exper- 
imental data of the literature, and new data that were 
obtained for bubbly air-water flows through axi- 
symmetric and horizontal sudden enlargement. 

2. BASIS FORMULATION 

Consider a gas-liquid two-component subsonic 
flow through a sudden enlargement (Fig. 1). Isolate a 
volume Vof fluid limited by the closed surface A made 
of: 

-the upstream section A, and the downstream section 
Az selected in such a way that the flow is fully 
developed ; 

-the lateral surface of the wall, A,; 
-the surface of the cross section, AO. 

Apply the global balance laws to the part of the con- 
trol volume V occupied on average by phase K. The 
mass balance of phase K can be written as 
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NOMENCLATURE 

A,, A, geometrical sections defined in Fig. 1 ReL Reynolds number of the liquid flow, 
b’l defined by (1 - x)GD/pL 

A,,, A, material surfaces defined in Fig. 1 [m*] T absolute temperature [K] 
c empirical parameter in the correlation TK total stress tensor of phase K: 

of Chisholm et al. TK = TK-pKT, where 7, is the viscous 
CD bubble drag coefficient stress tensor, and pK is the pressure of 
c DB drag coefficient of an isolated bubble phase K [Pa] 
c pK specific heat of phase K [J kg-’ K-l] s velocity ratio defined by Vo/ VL 
c p,m average quantity, defined by X quality 

x&+(1-x)C,, [J kg-’ K-‘1 X, phase density function (equal to 1 or 
C, coefficient defined by App,‘“,/(Gf/2pH) 0, the local point being occupied or 

f” 
specific total energy of phase K [J kg-‘] not by phase K) 
factor in equation (22) X, 

F,, F2 momentum flux [equation (15)] [pa] 
ya;;;. defined by [( 1 -x)/x] 

g gravitational acceleration [m s-*1 
G total mass velocity defined by M/A 

[kg m -= s-‘I 
hK specific enthalpy of phase K [J kg-‘] Greek symbols 
H step height, defined by (D2-0,)/2, c? global void fraction 

where D is the pipe diameter [m] uh volumetric quality, defined by 
K empirical parameter in the correlation Qo/(Qcs+ QJ 

of Wadle APs’np singular pressure variation calculated 
I,, I, dimensionless lengths, defined by L2/H by equation (28) [Pa] 

and Lo/H, respectively 0 angle between 1, and g (Fig. 1) 
LO length defined by @ zn dz = 0 [m] 1, sing!e-phase friction factor (liquid 
L2 length from the enlargement to obtain flow) 

the fully established flow [m] 5 surface tension [Pa m-‘1 
M total mass flow rate [kg s-‘1 PK density of phase K [kg m-‘1 
n unit vector normal to the closed PH homogeneous mixture density, defined 

surface A, oriented outwards by 1/(4~q+(l-4/~3 [kg me31 
qK heat flux density exchanged with phase Pm average mixture density, defined by 

K [w m-‘1 ~PG+U--~PL [kg me31 
R ideal gas constant [J kg-’ K-‘1 fJ area ratio of the enlargement, defined 
Y interface velocity [m s-‘1 by AdA, 

VK velocity of phase K [m s-‘1 Zfr axial projection of the resulting forces 
V SL superficial velocity of liquid, defined on the lateral wall A, fNj 

by QJA, where QK is the volumetric flow $2 frictional pressure loss multiplier 
rate of phase K [m s-‘1 420 multiplier factor of singular pressure 

RB bubble radius [m] variation 
ReB bubble Reynolds number, defined by z Lockhart-Martinelli parameter 

2R,p,( VG - VL)/pL, where pL is the liquid : parameter of the MEM solution 
dynamic viscosity (Section 3.1) [Pa’]. 

+ s pK(V,--V,)n,dA = 0 (1) 
4, 

where X, is the characteristic presence function of 
phase K (0 or l), VK is the velocity vector of phase K, 
pK is the density of phase K, n is the unit vector normal 
to A, oriented towards the outside of volume V, n, is 
the unit vector normal to the interface Ai,t, oriented 

towards the outside of the phase K, and Vi is the 
interface velocity vector. 

The momentum balance equation for phase K leads 
to 

$ XKPKVKdV+ 
s s 

x&,(v,n)v,- TKnl dA 
Y A 

P ,- 

+ J [PdY~nd(vK- Vi> - FKnKl dA = XKP~ d V 
4, J Y 

(2) 



Fig. 1. Schematic representation of a sudden enlargement. 

where TK is the stress tensor of phase K, and g is the 
gravitational acceleration. 

The energy balance of phase K can be written as 

= s xK+.gv, dw x,(T,V,)ndA - &wdA 
Y s A s A 

Equations (4)-(6) are developed in an algebraic form 
and are submitted to the following simplifying 
assumptions : 

(3) 

where EK is the specific energy of phase K equal to 
uK + (1/i/2) (uK is the internal energy per unit mass of 
phase K), and qK is the heat flux density exchanged 
with phase K. A bar above a quantity means that this 
quantity is averaged over some time interval large 
enough to smooth out the instantaneous fluctuations. 
Hereafter, a quasi-steady flow is considered, which is 
often the case in pmctice, i.e. a flow for which 

where fK is a conservative quantity (pK, pKVK or pKEK). 
Moreover, it is assumed that the flow is adiabatic. 

The mass quality remains unchanged for a two- 
component system equation (1) for the mass balance 
of phase K become:3 

s XKPK(VKL) dA = s x,~ic(vJ,) dA 
Al 4 

&ir-ho, = Cr.&T,-T,) 

and the enthalpy variation of the liquid by 
(K= GorL). (4) 

By adding up equations (2) for each phase, and taking 
into account the local interfacial condition [6] 

C [PK(VKIRK)(VK-Vi) - bkl = 0 
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the momentum balance of the mixture becomes 

-FL, x,~dYJz)(vA) dA 

x,r~AiA) d v. (5) 

By adding up equations (3) for each phase, and taking 
into account the local interface condition [6] 

the energy balance of the mixture becomes 

XKP,OKWK dA -c ~,P#A)& dA 
2 s K AI 

=FJ:-- 
x,~&v, dV+ xK(TKv,)n dA. (6) 

s A 

Hl-the turbulence terms are neglected [7], 
HZ-the spatial distribution parameters are assumed 

to be equal to 1, 
H3-the effects linked to the superficial tension are 

neglected (consequently, one can assume the 
equilibrium of the averaged phasic pressures: 
PO =PL =h 

H4-the pressure is approximately uniform in the sec- 
tion of the singularity, 

HS-the thermal equilibrium between the phases can 
be considered as acceptable to a first approxi- 
mation (TG = TL = T), 

H6-the gaseous phase is considered as ideal gas 
(pG = p/RT, where R is the ideal gas constant), 
the liquid is incompressible (pL = constant), and 
the specific heat C,,K of each phase is constant. 
The enthalpy variation of the gas is given by 

hLZ-hL, =‘y+CPL(T,-T,). 

Taking into account assumptions Hl-H4, equations 
(4)-(6) are reduced to the following set : 
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“a,PGl vG, = u2PG2 vG, 

41 -@",)PLVL, = u--z)PLvLz 

s 

(2) 

PI +“[cr,PG,V~,+(l--cc,)P,Vt,l+ Pmgr dz 
(1) 

-~=P2+[a2PG2v~2+(1-C(~)p~V~2] 
2 

“~“lPGl(hG~~~V~~)VGlf(l~tll)P~(~~lf~V~l)V~~l 

+ CC, Lzgz = aZPGZ@GZ +; V&Z) vG2 

+u -~2)Pdhzff C2)VLZ (7) 

where cr = AJA, denotes the area ratio of the enlarge- 
ment, pm = ap, + (I- cc)p, is the averaged density of 
the mixture, L, is the distance between the cross sec- 
tions A, and A,, zfr is the projection in the z-direction 
of the resulting wall forces on the lateral wall A,, and 
G, = M/A, is the mass velocity at the inlet, where M 
is the total mass flow rate. The sign for rfr has been 
selected such that zfr > 0. 

3. SIMPLIFIED MODELS 

The difference between the mechanical inertia of 
both phases leads to the consideration of a kinematic 
non-equilibrium. The slip between phases is mainly 
due to the non-perfect momentum transfer at the 
interface. This momentum transfer is influenced by 
several physical parameters, such as the topology of 
the interface, the physical properties of the phases, the 
mass flux, and the quality. In order to estimate the 
role of this type of non-equilibrium on the global 
characteristics of the flow through an expansion, two 
models will be analysed : the mechanical equilibrium 
model (MEM) (no slip between phases), and the 
mechanical frozen model (MFM) (no momentum 
transfer between phases). 

3.1. MEM 
One assumes that the momentum transfer 

coefficient between the phases in the control volume 
is infinite. This is equivalent to the assumption that 
no slip exists between phases. Thus 

VG, = vri = v, (i= 1,2). (8) 

By eliminating the void fraction between equations 
(7) and (8), the set of equations is reduced to a simpler 
one, where the variables are p, T and V. If this set is 
made explicit with the quality x, which is constant, 
and taking into account assumptions H5 and H6, one 
finds that 

v2 
xRT, l-x 

= aG, 
-+-- 
P2 PL 

p2 +aG, Vz = P, 

l-x 
;V:+c,,,r,+- pL PZ = E, 

where 

G, = 
VI 

is the mass velocity of the mixture at A,, 

P, = p, +oG, V, 

is the total pressure at A,, 

l-x 
-6 =;V;+C,,T,+-p, 

PL 

is the total energy per unit mass at A,, and 

&n = xc,, + (l -x>c,L 

In this simplified approach, the wall friction term at 
the wall A, and the gravity term are neglected. 
Although the set of equations (9) is non-linear, it 
accepts an exact analytical solution given by 

(% - 1) k, - (~)(aG,)2]+f2/2 

Pz = 
LLprn L-1 

Rx 

p1--P2 
v, = ___ 

GG, 

where 

R= (1-$)2[(!$)@G,)2_P,] 

(10) 

- l-2+ [PT. 
( > 

_ 

The mixture is equivalent to a single-phase fluid whose 
properties are the averages of the corresponding 
properties of each phase. In the MEM, the upstream 
velocity is estimated by 

v, 2 
PH.1 

where 

PH., = (;+$f)' 

is the homogeneous density. 

3.2. MFM 
The momentum transfer between the phases is neg- 

lected. This means that the phases are completely dis- 
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connected, and, thus, each phase flows according to its 
own mechanical inertia. By expressing the momentum 
balance equation OF the gas phase in which the inter- 
facial transfer term vanishes, it is found that 

where 

F, ““,PGIV~~+(~-OII)PLV~, 

F2 = oG,[xV,x+(l-x)V,,] 

A=;(xS’+l-x)- 
C,,,T,SG,(xS+l-x) 

PI VG, 

- X,(&ji@= s s xGp,g,dV. (11) 
A ” 

B=y($+;)-($).G,(xS+l-x) 

Taking into account assumptions H l-H4, the balance 
equation (11) is reduced to 

o{ [a, + (&+]P, +alPG, Vt’} 
= a*(P*+PG*vi2). (12) 

No interaction between the phases corresponds to the 
condition where the momentum flux defined by 

ah Vk + (1 -a)pL VZ 

is minimum. In this case, the velocity ratio is given by 

V -=(-I 
l/2 

G2 PL 

V L2 PG2 
(13) 

The void fraction in the separated zone must be con- 
sidered as a variable of the MFM. By taking into 
account assumptions H5 and H6, an approximate 
solution of the system of equations (7), (12) and (13) 
can be obtained if the superficial velocity of the liquid 
is not too high (subsonic flow). One can then assume 
that 

VG2 N PL 

---c-j 

1'2 _ 
- s. 

v - PGI - I.2 

The approximate variable vector is given by 

v 
L2 

~ 2+ (B2 -4AC)“2 
2A 

vG2 = svL2 

P2 g (PI +(TF,)--Fz 

1 
a’“L l-x p2 

( > -RT,p, 
s 

X 

a0 E {[alp2 (I+%); 

(14) 

(15) 

c= oF, - C,,, T, 

Solution (15) is verified by comparing it with the 
numerical solution of the set of equations (7), (12) 
and (13) for an air-water flow at ambient pressure 
and temperature, qualities ranging between lop3 and 
10m2 (a, N 0.2-0.4), and with different area ratios. 
Both solutions agree within an accuracy ranging from 
0.1 to 5% for a not too high V,,. Thus, result (15) can 
be used as a solution of the MFM. For this model, 
each phase behaves independently of the other. The 
velocity non-equilibrium, mainly fixed by the pressure 
gradient of the flow, becomes maximum. The two- 
phase flow is equivalent to two independent single- 
phase streams. The velocity of each phase is estimated 
by the following relationships : 

XGI v,, =- 
alPGl 

and I’,, = illrx): 
4 L 

In the MFM, the global void fraction a, is evaluated 
by the velocity ratio 

v,, = fi “2 
VI.1 ( > PO1 

which corresponds to the minimum momentum flux. 
Neglecting the wall friction term and the gravity 

term, a multiplier factor of singular pressure variation 
is defined by 

42 =P2-P1 
LO 

ApLo 
(16) 

where 

ApL, = ~(1 -rr)z (17) 

is the singular pressure variation in the flow of liquid 
only. 

Pressure p2 which appears in equation (16) is 
directly deduced from solution (10) for the MEM, or 
from solution (15) for the MFM. The results of the 
comparison are presented later in this paper. 

4. BUBBLY FLOW MODEL 

The variables describing the flow have been selected 
as follows : p, T, V,, V, and a. Thus, five equations 



3380 A. ATTOU et al. 

are needed to solve the problem. The four available 
equations are given by set (7). 

A complementary equation will be given by express- 
ing the momentum balance equation of a given phase, 
for example the gaseous phase. It is necessary to intro- 
duce a particular structure of the flow in order to 
approximately take into account the interaction forces 
between the phases. Consider a bubbly flow ; the bub- 
bles will be assumed to be spherical, and with a small 
diameter with respect to the pipe diameter in order to 
neglect the effects of fragmentation and coalescence. 
By expressing the momentum balance equation inte- 
grated over the volume of a bubble, Berne [8] obtains 
the following momentum equation, in the steady-state 
condition : 

where R, is the bubble radius, and C, is the drag 
coefficient of the bubble. 

Although this equation is established for an isolated 
bubble, it remains suitable for a flow with many bub- 
bles as long as there is a low void fraction, and the 
bubble radius remains small with respect to the pipe 
diameter. 

In this condition, the bubble interaction effects can 
be neglected as a first approximation. Nevertheless, 
for higher void fractions, these effects have to be taken 
into account. The momentum equation (18) is applied 
at cross section AZ, where the flow is fully established. 
Due to the weak mechanical inertia of the gaseous 
phase, the term pGVGdVG/dz is small with respect to 
the pressure gradient. Due to the incompressibility of 
the liquid phase, the acceleration term of the liquid 
remains also small with respect to the pressure gradi- 
ent. The term of the bubble growth is mainly due to 
the phase change ; this term can be neglected for a 
two-component system. Thus, the following equa- 
tion : 

is obtained. The momentum law of the mixture ex- 
pressed in the downstream section A, can be written 
as 

where (dp/dz), is the two-phase pressure gradient due 
to wall friction. 

Due to the weak mechanical inertia of the gaseous 
phase, and due to the incompressibility of the liquid, 

is given approximately, where 

(dpldz), 
” = (dp/dz),_ 

is the multiplier factor for the wall friction, 

(dpidzh. 
‘* = (d&W, 

is the Lockhart-Martinelli parameter, where (dp/dz), 
is the pressure gradient due to the wall friction for the 
how of phase K only. 

Berne [8] has observed that the acceleration term 
related to the phases for a steam-water flow remains 
at a maximum of 10% of the pressure gradient. This 
minor contribution is mainly due to the bubble growth 
induced by the vaporization during the expansion. 
This bubble growth is significant, and leads to large 
differences in phase accelerations due to the large 
mechanical inertia difference. In the case of a two- 
component system, the interface mass transfer is zero, 
and one can assume the relative acceleration term is 
less than 10% of the pressure gradient. To check this, 
an isoquality flow at ambient pressure and tem- 
perature (p-2x lo5 Pa and T- 293 K) is 
considered. The mass quality is selected as 10m3, the 
void fraction is 0.2, and the mass velocity changes 
between lo3 and 5 x lo3 kg m-* SK’. Some simple 
calculations have shown that, in the most unfavour- 
able case, which is the case where the relative variation 
of the void fraction is most important, the relative 
acceleration term is limited to about 2-3% of the 
pressure gradient (dp/dz is evaluated by the usual 
friction factor formula). The contribution of the rela- 
tive acceleration will thus be neglected, and equation 
(19) becomes purely algebraic. Further, the mutual 
interaction of the bubbles tends to decrease the rela- 
tive velocity between the bubble and the liquid with 
respect to the case where the bubble would be isolated 
in the liquid. This collective effect tends to increase 
the bubble drag, and can be approximately taken into 
account to enlarge the application domain of the 
momentum equation for larger void fractions : 

CD = Gaf(4 (22) 

where C,, denotes the drag coefficient of an isolated 
bubble, andf(a) is the corrective factor function of 
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the void fraction : the Wen-Yu correction is used (rec- 
ommended by Wallis [9]), which is 

1 
JiIcc) = ~ 

(1 -u)4.7. 

Two types of corrections have been used to take into 
account perturbation due to the set of bubbles: first 
of all, (dp/dz), is more important in a two-phase 
regime than in a single-phase liquid flow. The differ- 
ence is more important with a higher void fraction, 
and is taken into account by means of the multiplier 
factor 0:. Then, the drag coefficient is also influenced 
by the bubble interaction, which increases with the 
void fraction. The difference between the drag 
coefficient of an isolated bubble and the drag 
coefficient in the bubbly flow is introduced by means 
of a corrective factor, f(a). 

The wall friction force zfr which appears in set (7) 
can be evaluated as follows : 

Tfr = c ri, dZ = 27cR2(L2 - L,,)Q,~ (23) 
J 4 

where L, denotes the distance from the enlargement 
such that the resultant force at the wall due to the 
friction is zero, which means that @ rn dz = 0 ; R2 is 
the radius of the downstream duct. 

From equation (123) : 

> = $(L* - Lo)zo2 
2 2 

is deduced, or, in another form, 

(24) 

where 1z = LJH and lo = LO/H, where H = (R2- R,), 
AL is the single-phase friction factor, and 
ReL = [2(1 -x)GR]/pL is the Reynolds number of the 
liquid only. 

The integral gravity term, which appears in set (7), 
can be evaluated by assuming that the density of mix- 
ture averaged through the cross section of the down- 
stream pipe is not disturbed too much. Then : 

s 

(2) 
pmsy dz = ;(P:I +~m&rL~ (25) 

(1) 

where 

Pd + = oa,p,, +(1 -oa,)p, and 

Pm2 = %PGZ+(l-%)PL. 

The average density through the cross section located 
just downstream from the enlargement, p,‘, , is evalu- 
ated according to cseveral experimental observations 
[5, 71. In fact, these measurements have shown that 
there are only a few bubbles in the step section 
&(% << a,). 

Taking into account equations (19), (21), (22), (24), 
(25) and set (7), the five-equation model of the bubbly 
flow regime through the enlargement can be written 
as follows : 

a2PG2vG2 = aalpGl vGI 

(1-a2)pLvL2 = 41---aI)pLVLI 

(P2--Pl)+(a2PG2V~2+(1-a2)PLV:2) 

-a(alpG,V~,+(l-a,)pLVt,) 

= ;(P,, +pm,)g~,Hcos 0 

(1 -x)’ 
- p,cr’G:(l -~)(12-I~)~L2(ReL)~Z2(x2) 

(aZPGZ VG2hG2 f c1 - a2)PL V~2hL2) 

-~(~IPG,~GvG~~G~+(~-~~)PLVL,~L,) 

+ $a2PG2Y&2 + c1 -aZ)PL vt2) 

-$a,pC,Vb,+(l-a,)pLY:,) =aG,I,gHcos0 

), 
L2 

(ReL) (l -x)2G’a2 ,$’ (x’) 

~DZPL L2 

= t1 -"2)(PL-PG2)gcose 

+ ~~(a2)c,.,(Re.)P,(v,,- f”,,)’ (26) 
B2 

where 0 is the angle between 1, and g (Fig. l), and 

Re 
B 

= 2PL(vG - VLMB 

PL 

is the bubble Reynolds number. 
The establishing length of the flow, Ll, is the length 

from which the distribution of the wall shear stress 
becomes uniform. Measurements made by Suleman 
[5] and Aloui [7] performed in a bubbly flow have 
shown that L2 z SD2 ; it seems that L2 weakly depends 
on the void fraction and the area ratio (for a < 0.30 
and 0.1 < cr < 0.45). Further, measurements on the 
distribution of rn downstream from the enlargement 
made by Suleman have shown that the reduced 
characteristic length f, E 15. This characteristic length 
seems to weakly depend on the void fraction and o 
(for a < 0.30 and 0.1 < CJ < 0.45). 

The algebraic set of equations (26) is highly non- 
linear : its solution requires an iterative numerical pro- 
cedure. The knowledge of the real global void fraction 
upstream from the enlargement is necessary to resolve 
the problem. The multiplier factor of the singular pres- 
sure variation will be defined by 

42, = _+ (27) 
smg,Lo 

where the two-phase singular pressure variation will 
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be evaluated from p2, deduced from the solution of 
the set of equations (26) by 

x ~2k.2(fkMt2(x2) --kd2~cos 0. (28) 
Equation (28) is deduced from the extrapolation of 
the longitudinal pressure profile, which is obtained 
experimentally. By expressing equation (28) for the 
liquid only, one obtains 

(29) 
The gravity term does not appear any more in the 
expression of ApPsing,Lo due to the assumed incom- 
pressibility of the liquid phase: the liquid density is 
uniform downstream from the enlargement. Note that 
the solution of equations (26) requires assumptions 
H5 and H6. 

5. SIMULATION RESULTS 

For the MEM and MFM, the multiplier factor 
(I$, is calculated from equations (16) and (17). For 
the bubbly flow model, @, is calculated by equations 
(27)-(29). The three types of model will be compared 
in terms of @,, based on the same conditions of 
pressure, temperature, mass velocity and mass quality 
upstream from the enlargement. These conditions will 
be fixed by the experimental data. Velasco [2] has 
obtained measurements of the pressure distribution 
and void fraction of an air-water bubbly flow along 
a sudden vertical enlargement under the following 
conditions : 

rs = 0.312, 
p, z 1.5 x 10’ Pa and T, z 293 K, 
x varies between 7.1 x lop4 and 3.4 x 10m3 

(0.1 < LX < 0.5), 
Vsr,, varies between 2.8 and 4.4 m s-‘. 

Calculations show that, by varying the superficial vel- 
ocity of the liquid in the interval considered by the 
author, practically no significant influence is observed 
on @f, for the three models considered here. This 
seems logical since the parameter @t, is defined as the 
ratio of two quantities. Each of these quantities is 
approximately proportional to the square of Vst-,,, for 
a relatively low mass velocity (the compressibility 
effect is then small). 

The void fraction will be determined by the exper- 
imental results of Velasco [2]. These results are plotted 
in Fig. 2(a) in terms of the upstream global void frac- 
tion as a function of the volumetric quality c(~ defined 
by Qo/(Qo+ QL), where QK is the volume flow rate of 
phase K. It can be observed that the experimental data 
approximately form a straight line approached by the 
following correlation: a, = 0.71a,, which fits the 
experimental data very well [Fig. 2(a)]. The solution 

ah (-) 
3 I I 

*:Data of Velasco( 1975) 
---: MEM 

2.5 - . . . . MFM I’ - 
-: BFM (a) I’ 

2 _ -.-: BFM (b) 
,I’ 

0 
I 

0.2 0.4 0.6 

ah (-> 

Fig. 2. (a) Upstream global void fraction as a function of the 
volumetric quality : (0) experimental data ofvelasco [2], (. .) 
homogeneous conditions, (-) linear correlation a, = 0.71~~~. 
(b) Multiplier factor of the singular pressure variation as a 
function of the volumetric quality : (*) experimental data of 
Velasco [2], (---) MEM, (. ..) MFM, (-) proposed BFM 
[Vs,, = 4.4 m s-’ (a)], (-.-) proposed BFM [Vs,, = 2.8 m 

s-’ (b)]. 

of the set of equations (26) also requires some closure 
laws for : 

-the wall multiplier friction factor @: wall shear 
stress measurements of Souhar [lo] have led to a 
correlation valid for a bubbly flow regime which 
agrees with his results with a better accuracy than 
the Lockhart-Martinelli correlation [l l] (accuracy 
-8%). Based on the measurements of the wall 
shear stresses, Suleman [5] proposes a correction to 
Souhar’s correlation : 

This expression will be used in the present calcu- 
lations. 

-the drag coefficient of a bubble CnB (Ishii-Zuber’s 
correlation [ 121 is used) : 

for Nvi < Nc (viscous regime) 
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for Nvi > Nc (deformed regime) 

where 

is the viscosity number, and 

N 
c 

where 5 is the surface tension. 
The single-phase friction factor is calculated by 

Blasius correlation. Solution of equation (26) is 
obtained by a Newton-Raphson iterative method. 
The three models compared with the experimental 
results of Velasco are shown in Fig. 2(b), where the 
volumetric quality has been taken as a variable. The 
two simplified models correspond to the limit of an 
area including all the experimental data. The MEM 
and MFM, respectively, overestimate and under- 
estimate the singular multiplier factor deduced from 
the measurements. The overestimation of the MEM 
can be explained by the ideal momentum transfer 
between the phases. This assumption leads the liquid 
to decelerate when it passes through the expansion in 
the same way as a gas. Consequently, the decrease in 
the momentum of the mixture mainly contributed by 
the liquid (due to tihe small mechanical inertia of the 
gas, po << pr) is more important than it is in reality. 
It leads to a pressure recovery which is also higher 
than in practice. 

The underestimation of the MFM can be explained 
by the free movement of each phase, which cor- 
responds mainly to its mechanical inertia. Due to its 
large inertia, the liquid will decelerate through the 
expansion much more easily than a gas. Consequently, 
the decrease in the momentum of the mixture is smal- 
ler than in reality. This induces a pressure recovery 
also smaller than in reality. When the bubbleliquid 
interaction is taken into account, the mixture passes 
the expansion with a change in momentum com- 
pressed between the values corresponding to the two 
simplified models. The calculations by the bubbly flow 
model (BFM) are performed for each limit of the 
superficial velocity of the liquid which characterizes 
the data (VsL,, = 2.8 and 4.4 m s-‘). The BFM (26) 
presents a satisfying agreement with the measure- 
ments [Fig. 2(b)], and no significant velocity effect is 
predicted by the BFM. The bubble radius remains in 
principle a necessary parameter to apply model (26). 
The average bubble diameter generated in the Velasco 
tests is of the order of 2-3 mm, which means 
Rs,/R, LZ l/10. This value has been introduced to 
solve the problem. By varying the reduced bubble 
radius from&to i, the results of the bubbly flow model 
remain practically unchanged. Thus, for reduced bub- 
ble radii which remain compatible with the structure 

0.2 -“.-.-.?.._._._Y_.._.-._e_..._. ;--------- 
-‘-‘---U.- ,I._ L;._~_.,;..._;; 

0- 
0.1 0.2 0.3 0.4 

ah (-1 
Fig. 3. Coefficient CT as a function of the volumetric quality : 
(0) experimental data of Owen et al. [4], (- - -) MEM, (. . .) 
MFM, (-.-) model of Chisholm and Sutherland [l], (+ + +) 

model of Wadle [3], (-) proposed BFM. 

of a bubbly flow, model (26) seems to be rather insen- 
sitive to the bubble radius. 

Owen et al. [4] made some measurements of the 
pressure profile of a bubbly air-water flow along an 
horizontal sudden enlargement under the following 
conditions : 

CT = l/9, 
p1 g 1.5 x lo5 Pa and T, g 293 K, 
0 < 0. < 0.35. 

The calculations have been made in the same way as 
above. For this particular set of experiments, the two 
phases were well mixed at the inlet of the enlargement, 
and, consequently, it is assumed that c( N CX,,. The 
results of the three models are close to each other. In 
Fig. 3, the experimental data of Owen et al. are plotted 
in terms of the coefficient C, defined by 
AJJ&(G:/~~~) as a function of ah. The calculation of 
this parameter is insensitive to the values of the super- 
ficial velocity of the liquid. Thus, it is fixed in the 
simulations that Vs.,, = 5 m s-‘. Also plotted are the 
predictions of the following models : 

C~=Ze(l-&l-.)2(1+$++) 
PL 

with 

(Chisholm and Sutherland [ 11) 

x, = (~)(~)“’ 

and 

1 (Wadle [3]) 

with K = i denoting a constant determined exper- 
imentally by Wadle. 

One can see that the model of Chisholm et al. and 
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the MFM underestimate the experimental coefficient 
C,, although their predictions remain reasonably 
good. The predictions of these two models are close 
to each other. The underestimation of the Chisholm 
model has also been observed by other authors [Z, 31, 
who have compared this model with other exper- 
imental data. Wadle’s model widely overestimates the 
measured C, coefficient. Owen et al. have observed 
that, with K = 0.22 (very different from $), Wadle’s 
model agrees quite well with the measurements. The 
parameter K, unless it is submitted to an adequate 
modeling, makes Wadle’s equation empirical. Regard- 
ing the BFM (26), it is shown that the agreement is 
satisfactory with the measurements of Owen et al.; 
also noted are some small overestimations of C, for 
relatively high void fractions (cl,, > 0.2). The present 
model is not affected by any empirical correction. The 
predictions of the BFM are close to the results of the 
MEM due to the small slip velocity in the horizontal 
flow. 

Suleman [5] has made some local measurements of 
the pressure profile and the void fraction of a bubbly 
air-water flow along vertical sudden enlargements 
under the following conditions : 

o = 0.111, 0.25 and 0.444, 
pressure and temperature close to atmospheric con- 
ditions, 
0 < GI < 0.3, 
1 m s-’ < VsL,, < 4 m s-‘. 

These data are characterized by small mass velocities. 
These experiments are simulated by the BFM. The 

results of the simulations have been compared with 
the data in Fig. 4. It is observed that the proposed 
model (26) fits these data very well. 

The mean discrepancy between the predictions and 

the data are equal to 3.5% for Apsing > 1800 Pa. The 
error is greater for small values of APsmg (-30%) 
corresponding to very small mass velocities. This can 
be explained by the greater uncertainty in the measure- 
ment of this quantity under these conditions ; the fluc- 
tuations in the variables of the flow become signifi- 
cant. 

There are only a few experimental data for two- 
phase bubbly flows through horizontal pipe enlarge- 
ment. Local measurements have been made of pres- 
sure and void fraction profiles of a bubbly flow along 
an horizontal sudden enlargement under the following 
conditions : 
o = 0.358 (0, = 0.017 m and Dz = 0.0284 m), 
pressure and temperature close to atmospheric con- 
ditions, 
0 < tl < 0.3, 
2.9 m SK’ < I’s,, < 5.6 m SK’. 
These data are characterized by APsi,, > 1700 Pa. 

The mass velocity of the liquid must be sufficiently 
high to avoid the stratification phenomena shown by 
several pattern maps. In the region of superhcial liquid 
velocities investigated, the gas phase remains 
dispersed, and no stratification effect was observed 
downstream from the singularity. The results of the 
BFM calculations are compared with the present data 
in Fig. 5. One can observe that the bubbly model (26) 
is in good agreement with the present data. The large 
majority of the experimental points are predicted by 
the model with an error less or equal to 4%. These 
results (Figs. 4 and 5) are not sensitive for values of 
reduced bubble radius from f to i. 

6. CONCLUSIONS 

The two-phase gas-liquid flow through a sudden 
enlargement is analysed by using the global balance 

0 5o+l 10001500 2003 2sOu 3w0 3!mJ 4000 

APs~ng,exp. ( Pa 1 

Fig. 4. Comparison of the proposed BFM with the experimental data of Suleman [5]. n 
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1. 

2. 

3. 

4. 

5. 

Fig. 5. Comparison ‘of the proposed BFM with the new 
experimental data. 6. 

laws. The thermal equilibrium between the phases has 
been systematically accepted. The influence of the 
momentum transfer on the global characteristics of 
the expansion is stu’died by developing two limit mod- 
els: the MEM and the MFM. The comparison 
between these twcl simplified models in terms of 
reduced singular pressure variation with some exper- 
imental data shows that these models simulate 
extreme conditions. A BFM which takes into account 
the drag of the bubble is developed, and fits the exper- 
imental data of the literature well. New experimental 
measurements of a.diabatic air-water bubbly flows 
through an horizontal pipe enlargement have been 
performed. The proposed BFM is found to be in good 
agreement with the present data. It is found that this 
physical model is only weakly influenced by the 
reduced bubble diameter. This study shows the 
importance of the mechanical interaction between the 
phases when a two-component gas-liquid flow 
through an abrupt enlargement has to be modeled. 
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8. 

9. 
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